Environmental science and its regulation are very complicated. It is important for environmental permit holders to understand both and how their business fit into the natural environments in which they operate.
In these times of climate change and weather event uncertainties being prepared to quickly adapt is vital for your future success. These posts will help you be better positioned to sustain your position and business.
-
Organisms and Their Habitats
Categories: Estimated reading time: 2 minutes
Understanding relationships between organisms and their habitats is important to operators and regulators, as well as being critical to managing species with low population levels. Pacific salmon in the Columbia River system and sage grouse and Lahontan cutthroat trout in the Great Basin are among many examples where understanding the factors limiting the presence or number of individuals in a defined area need to be quantified in a technically sound an legally defensible way. -
Reference Areas
Categories: Estimated reading time: 2 minutes
Natural ecosystems are complex and highly variable at multiple size scales. Because of the difficulties of accurately summarizing complexity and variability in an index number, regulators often require a reference area for comparison with a proposed or reclaimed project area. Agreement on a suitable reference area may be a requirement prior to permitting or bond-release decisions for mining and logging operations. It is common for selection of an acceptable reference area to take a long time. -
Profitting From Your Environmental Data
Categories: Estimated reading time: 2 minutes
Across the western US drought, wildland fires, cheatgrass, Western juniper, Lahontan cutthroat trout, bull trout, salmon, bald eagles, desert tortoise, and sage grouse all affect where and how natural resource companies operate. Project planning and approvals can be greatly facilitated by application of advanced statistical and spatial models to environmental data. Causal relationships between explanatory variables such as habitat, food, and predators to response variables (species numbers and distributions) may be explained by linear regression models. -
Regulatory Data Models
Categories: Estimated reading time: 2 minutes
Natural resource companies do not object to environmental regulations that are consistent and support predictability. Consistency and predictability are critical for decision making under conditions of uncertainty. Natural ecosystems are inherently variable across a broad range of temporal and spatial scales; climate change, drought, and societal desires for sustainability make people more aware of this variability. The science used for development and enforcement of environmental regulations has not kept pace with developments in ecological theory and the analytical tools capable of describing, characterizing, classifying, and predicting natural ecosystems as well as distinguishing natural variability from anthropogenic changes. -
Sediment Sampling Analysis
Categories: Estimated reading time: 1 minutes
Collecting sediment samples for analysis of contaminants–particularly in river systems–is not just a matter of going out with a bucket and shovel. In fact, it is much more complex than a water quality survey, aquatic biota survey, or any terrestrial sampling program. Monitoring of sediment contaminants frequently is done to determine whether the sediments are a sink or a source of the chemicals of interest, and to evaluate the effects of the contaminants on the aquatic ecosystem as a whole. -
Addressing Regulatory Science Uncertainties
Categories: Estimated reading time: 2 minutes
Environmental regulations are supposed to be based on sound science, yet too often either that science is not presented or is deemed insuffiient by permit applicants and others. The result can be administrative appeals and legal challenges that increase time and costs for the applicant and indecision by regulatory agency staff. At their core, all environmental regulations ask three questions to assess compliance with the relevant law or statute: Will the permitted activity adversely effect the natural environment (forecasting)? -
Riparian Zones and Buffers
Categories: Estimated reading time: 2 minutes
Ecologists have determined that landscape edges – boundaries separating one type from another – have higher biological diversity and productivity than do the areas on either side of them. These transition zones are important to animals: mammals, birds, reptiles, insects, and fish. In terrestrial ecosystems edges are found between woodlands and grasslands and between forests and meadows. In aquatic ecosystems the edges are stream and river banks and pond and lake shores; the edges separating aquatic and terrestrial ecosystems are called riparian zones. -
Establishing Environmental Context for Water Quality Monitoring Data
Estimated reading time: 3 minutes
Water quality permit compliance monitoring data with concentration values exceeding statutory thresholds are assumed to result from permitted operations. Fines or penalties might be levied; remedial actions might be imposed. That permitted activities were responsible has not been demonstrated by the submitted data. This is particularly true when permitted activities are dispersed as mining, logging, and agriculture are. Missing in permit compliance monitoring report evaluations is the context for those constituent values that exceeded thresholds. -
Avoid, Minimize, or Mitigate: The Value of Environmental Data
Estimated reading time: 4 minutes
Regulators require collection and submission of baseline data prior to permit issuance (e.g., NEPA documents or other operating permits), and continuing data to evaluate compliance with permit conditions. The reason is the need to determine whether the proposed project might have unacceptable environmental impacts, and whether operations have such impacts. It is common for analyses accompanying reported data to be inappropriate or superficial and not answer two critical questions. Why do observations and measurements have the values they do? -
Spatial Patterns Support Sound Environmental Decisions
Estimated reading time: 3 minutes
Everyone recognizes that environmental data have spatial attributes. We are all familiar with GIS-produced maps showing where data were collected in relation to each other and to other variables. However, maps do not provide a critical requirement to objectively make operational decisions, justify environmental policies and regulations, or help finders of fact in litigation reach sound decisions. What maps lack is the quantitative description of patterns and relationships that reflect underlying environmental processes.